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Abstract The nonlinear behaviour of a one-dimensional idealized model of continuous sedimentation has been
investigated in this series of papers. The model is a scalar hyperbolic conservation law with a space-discontinuous
flux function and a point source. Parameters in the equation are the two input variables (concentration and flux) and
the control variable (a volume flow). The most desired type of solution contains a large concentration discontinuity
and is referred to as ‘optimal operation’. Operating charts (concentration-flux diagrams) have proved to be a means
for classifying the nonlinear behaviour. In this paper, some fundamental results on the dynamic behaviour are pre-
sented, which give information on the limitations of the range of the control variable. When this is used together
with the previously introduced optimal control strategies for step inputs, the process can be controlled.

Keywords Continuous sedimentation · Control · Dynamic behaviour · Operating chart · Thickener

1 Introduction

The aim of the process of continuous sedimentation is to separate particles from a liquid in a large tank under a
continuous inflow of mixture at an intermediate feed level. The particles settle by gravitation and are also influenced
by a bulk flow upwards above the feed inlet (the clarification zone), and a bulk flow downwards below the feed inlet
(the thickening zone), see Fig. 1 (left). Under optimal operating conditions, there is a discharge of a highly concen-
trated suspension at the bottom (the underflow) simultaneously with a clarified overflow of liquid at the top of the
tank (the effluent). The continuous-sedimentation tank is widely used in mineral processing, wastewater-treatment
plants, chemical engineering etc., and is called clarifier–thickener unit, gravity thickener, gravity settler, secondary
clarifier, or just settler. Under optimal operating conditions there are no particles in the clarification zone and there
is a large concentration discontinuity in the thickening zone, called the sludge blanket in wastewater treatment. This
state of the settler is called optimal operation.

Even under idealized assumptions, such as, all flows in the tank occur only in one dimension, the cross-sectional
area is constant, the feed inlet is a point source, and the particles are equally-sized spheres that form a incompressible
sediment at a maximum concentration, the process is still highly nonlinear because of the feed source, the outlets
and the settling properties.
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The process has been used for about a century. The need for information to the operators of the plants has led
to the ‘engineering’ development of rules, operating charts and graphical tools based on experiments and physical
considerations in parallel to the development of mathematically rigorous descriptions of the process by partial dif-
ferential equations (PDEs). In both of these two parallel developments, the idealized assumptions described above
have been the most common.

The aim of the present series of papers (the previous ones are [1–3]) is to give a deeper knowledge of the
behaviour of an idealized one-dimensional clarifier–thickener model for all possible input data and to present the
possibilities and limitations of control. The hyperbolic PDE model was formulated and analysed in [4,5], in which
existence and uniqueness locally in time were proved. Global existence and uniqueness were established by Bürger
et al. [6,7] and Karlsen and Towers [8].

The PDE model is hyperbolic because of the constitutive assumption by Kynch [9]: the settling flux of particles is
a function only of the concentration. This has also been the basis for the parallel ‘engineering’ development without
PDEs. References, discussions and developments relating to concepts such as the ‘solids-flux theory’, operating
charts etc. can be found in [1]. We mention here only the papers by Keinath, Laquidara et al. [10–12], which contain
interpretations concerning clarification failure and control related to the results of the present paper. References
relating to the development of PDE models and numerical algorithms can be found in [2].

In particular, the important contribution by Bürger et al. [13], which relies on the analyses by Karlsen et al.
[14,15], contains a generalization of the previous results (existence, uniqueness and numerical method) for the
hyperbolic equation to the case when also compression at high concentrations is modelled, which leads to a
strongly degenerate parabolic PDE. Many suspensions exhibit sediment compressibility for high concentrations. It
is, however, not possible to construct analytical dynamic solutions for the degenerate parabolic model in contrast
to the hyperbolic one. Because of this, and several other reasons discussed in [1,2], this series of papers deals
with the simpler hyperbolic model for suspensions forming incompressible sediments. Another reason is that a
systematic analysis of the possibilities and limitations for controlling the process cannot be found in the litera-
ture. Analyses, based on PDE solutions, of control possibilities under normal operating conditions can be found
in [16–22].

The need to control the settler is emphasized in several applications, see e.g. [12,23–42]. In particular, the diurnal
periodic load to wastewater treatment plants are of major concern, as well as the additional transient complications
caused by, for example, storm events; see the numerical simulations, experimental data and discussions in, for
example, [43–52].

During long periods of periodically varying feed concentration and associated flux with small oscillations and
with constant mean values, the settler is approximately in steady state and there may be no need for any control
action. If the amplitudes of the oscillations grow, when is a control action required in order to maintain optimal
operation? What is a good value of the control variable? In the present paper we answer the first question and
illustrate the problems of finding an answer to the second. The second question will be answered in [53] by means
of a regulator, which is partly based on the result in the present paper.

In this series of papers, the nonlinear behaviour has been investigated thoroughly in terms of solutions of the
hyperbolic PDE. In classifying the qualitatively different behaviours, a useful means is the engineering concept of
‘operating chart’; a concentration-flux diagram that is divided into several regions depending on the batch-settling
flux function, the value of the control variable, etc. For all possible locations of the feed point (input concentration
and flux) in such a chart, the possible steady states have been classified in [1]. Several relations between interesting
variables (control variable, outputs, maximum thickening factor, etc.) and the feed point were also given for steady-
state solutions. In [2], the state of optimal operation was defined as a special type of dynamic solution. Furthermore,
all qualitatively different step responses were classified in the case when the settler is in optimal operation initially
and the control variable (the volume underflow rate) is held constant. The same initial conditions and step inputs
were used in [3], and the control variable was adjusted according to optimal control strategies in order to meet
different suggested control objectives.

In the present paper we investigate and give rules on how to control the process during dynamic operation, i.e.,
as the feed point moves around in the operating chart. We focus on the main condition of the previously presented
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Operating charts for continuous sedimentation IV: limitations 251

control objectives: to maintain optimal operation as long as possible. In Sect. 2, the process, the model and the
previous results are reviewed briefly. In Sect. 3, some fundamental results on the solution of the PDE are presented.
These yield information on the limitations of the control variable’s range. Since we can control step inputs, see [3],
a natural next step is to investigate how to control periodic inputs consisting of a series of steps. This is done in
Sect. 4. Such discontinuous inputs, with large oscillations, are believed to be of the worst-case type, since the input
variables in reality are usually continuous with respect to time.

2 Preliminaries

In order to investigate explicit solutions of the present problem with such nonlinear features it is necessary to use
a comprehensive set of notation. Here, we review only briefly the fundamental notation and results presented in
the preceding papers [1–3]. These concepts are sufficient for understanding the ideas, results and simulations of
the paper. In the proofs of the theorems, and some discussions in Sect. 3, the full notation and assumptions on the
construction of solutions will be used without further reference.

2.1 The clarifier–thickener unit and the model

The one-dimensional model of the clarifier–thickener unit, or settler, was first presented in [5]. The full notation
for constructing solutions are given in [2, Sect. 2], to which we refer the reader.

Figure 1 shows the settler and the flux function in the thickening zone for three different values of the control
parameter Qu. The purposes of the settler may vary depending on in what industrial process it is involved. At least
in wastewater treatment the main purposes of the settler are the following. It should

1. produce a low effluent concentration;
2. produce a high underflow concentration;
3. work as a buffer of mass and be insensitive to small variations in the feed variables.

clarification zone

thickening zone

0 2 4 6 8 10
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Fig. 1 Left: Schematic picture of an ideal one-dimensional clarifier–thickener unit, where u stands for concentration and Q for
volume flow of the feed, effluent and underflow streams, respectively. The flow restrictions are Qf = Qe + Qu > 0 and Qe ≥ 0.
For the numerical simulations we use H = 1 m, D = 4 m, and A = π302 m2 ≈ 2827 m2 for the constant cross-sectional area.
Right: Flux curves f (u) in the thickening zone and characteristic concentrations. The bulk velocities are defined as qe = Qe/A etc.
The constant uinfl is the inflection point of fb(u) and f (u) = fb(u) + quu. For q̄u < qu < ¯̄qu there is a local minimum point
uM of f (u) that lies between uinfl and umax. Given uM, um is the lower concentration defined by f (um) = f (uM). For qu < ¯̄qu
there is a local maximum point, uM (< uinfl) of f (u). The batch-settling flux used for demonstrations with numerical simulations is
fb(u) = 10u

(
(1 − 0.64u/umax)

6.55 − 0.366.55
) [

kg/(m2h)
]
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The one-dimensional model of the settler is the following. The conservation law can be written as the partial
differential equation

ut + (F (u, x, t))x = s(t)δ(x), (1)

where δ is the Dirac measure, the total flux function is

F(u, x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

−qe(t)u, x < −H

g (u,Qe(t)) = fb(u) − qe(t)u, −H < x < 0
f (u,Qu(t)) = fb(u) + qu(t)u, 0 < x < D

qu(t)u, x > D,

and the source function is

s(t) = Qf(t)

A
uf(t) = Qu(t) + Qe(t)

A
uf(t) = (qu(t) + qe(t)) uf(t).

For convenience, the dependences of the flux functions within the settler on the (time varying) volume flows are
often not written out, i.e., we write g(u) and f (u). The physical input variables are the feed concentration uf and the
feed volume flow Qf . For graphical interpretations in operating charts it is, however, convenient to use the feed point
(uf , s) as input variable. The control variable of the process is Qu and has the natural restriction 0 < Qu ≤ Qf .
Two particular values of this variable arise from the properties of the batch settling flux function. Define

q̄u = −f ′
b(umax), Q̄u = q̄uA,

¯̄qu = −f ′
b(uinfl), ¯̄Qu = ¯̄quA,

which are the bulk velocities such that the slope of f is zero at umax and uinfl, respectively; see Fig. 1 (right).

2.2 Operating charts for control of steady states

Figure 2 shows the ‘steady-state chart’ and the ‘control chart’. Depending on the location of the feed point (uf , s)

in the steady-state chart, there are different possible steady-state solutions, which are all piecewise constant and
non-decreasing with depth; see [1, Table 1] for a complete table. The limiting flux is defined as:

flim(u) = min
u≤α≤umax

f (α) =
{

f (u), u ∈ [0, um] ∪ [uM, umax],
f (uM), u ∈ (um, uM);

see Fig. 2 (left). The graph of this function, together with pieces of straight lines, divides the operating chart into
several regions (definitions are stated in [2]). The limiting flux, as well as the characteristic concentrations and the
regions of the steady-state chart, depend on the control variable Qu; e.g. uM(Qu), f (u,Qu) and flim(uf ,Qu). The
following regions in the operating chart are independent of Qu:

�i =
⋃

Qu>0

�i(Qu), i = 1, . . . , 4,

P = P1 ∪ P2, where P1 =
⋃

0<Qu≤ ¯̄Qu

p(Qu), P2 =
⋃

Qu> ¯̄Qu

p(Qu),

�3a = �3 ∩ {
(u, y) : y < fb(uinfl) + ¯̄quuinfl

}
and �3b = �3\�3a;

see Fig. 2 (right). Given a feed point in this chart, there is a unique graph flim(·, Q̃u) that passes through the feed
point, see [1, Theorem 2]. With this unique value Q̃u on the control parameter, the settler is critically loaded in
steady state.

2.3 Optimal operation

The concept of optimal operation in steady state means that the concentration is zero in the clarification zone
and there is a discontinuity in the thickening zone between the concentrations um and uM; see Fig. 1 (right). This
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Fig. 2 Left: The steady-state chart. The thick graph is the limiting flux curve. If the feed point lies on this curve, the settler is critically
loaded in steady state, which means that it works at its maximum capacity. Below this graph the settler is underloaded, and above it is
overloaded with a non-zero effluent concentration. Each region corresponds to a specific steady state which is unique, except on the
limiting flux curve (and on �3 and �5), where the location of a discontinuity in the thickening and/or the clarification zone is not uniquely
determined. Note that the regions in this chart all depend on Qu. Right: The control chart with respect to steady states; �3 = �3a ∪�3b,
�4 = �3 ∪ �′. The regions in this chart are fixed (given the batch settling flux fb)

discontinuity is, in wastewater treatment, called the sludge blanket and its location at the depth x = xsb ∈ (0,D) is
called the sludge blanket level (SBL). A rising SBL refers to reality, although the x-coordinate decreases, because
of the downward-pointing x-axis. A necessary condition for this state is that (uf , s) ∈ p(Qu) ∪ �2(Qu) ∪ �3(Qu)

and Qu < ¯̄Qu, which implies (uf , s) ∈ P1 ∪ �2 ∪ �3a; see Fig. 2.
For a general dynamic solution, optimal operation and the SBL are defined as follows. Let ucl denote the restriction

of the solution u to the clarification zone.

Definition 2.1 The settler is said to be in optimal operation at time t if Qu(t) < ¯̄Qu and the solution of (1) satisfies:

• ucl(x, t) = 0 ⇔ u(x, t) = 0, −H < x < 0,
• there exists a level xsb(t) ∈ (0,D) such that

u(x, t) ∈
{ [0, uinfl), 0 < x < xsb(t)

[uinfl, umax], xsb(t) < x < D.

The definition implies a natural definition of the SBL for a settler in optimal operation: it is the discontinuity at the
level x = xsb(t) in the thickening zone, such that the jump in the concentration passes the characteristic concentration
uinfl. It is convenient to use this definition of the SBL also when there are particles in the clarification zone.

2.4 Strategies for controlling step inputs

To satisfy the three purposes of the settler mentioned above, some control objectives for the process were introduced
in [3, Table 1]. The main condition of these is to maintain optimal operation as long as possible. The objectives
are exhaustive in the sense that they can always be met, also after optimal operation cannot be maintained (since
the last condition, ue = 0, always can be satisfied).

Assume that the feed point (uf(t), s(t)) moves around, continuously and/or discontinuously, in the operating
chart. To fulfil any control objective, control strategies need to be specified, which means that Qu is defined as a
function of the feed point and possibly the SBL. By a control action we mean a relation between Qu and (uf , s) at
a fixed time point. In order to formulate control strategies we define the following subsets, or lines, in the operating
chart:
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Fig. 3 The lines L1 and L3, which coincide for low and high concentrations. The set S (the ‘safe’ region) is the closed region below
L3, shaded in the figure. D (the ‘dangerous’ region) is its complement, i.e. it lies strictly above L3. (Note that the feed point has to lie
on or above the line y = quu, since s = Qfuf/A ≥ Quuf/A = quuf .)

L1 =
3⋃

i=1

�i ∪ p ∪
{
(u, y) : y = quu,

f (uM)

qu
< u ≤ umax

}
,

L2 = {
(u, y) : y = flim(u)

} = �1 ∪ p ∪ �2 ∪ �4,

L3 = {
(u, y) : y = f3(u)

}
where f3(u) =

⎧
⎪⎨

⎪⎩

f (u), 0 ≤ u ≤ uM

f (uM), uM < u ≤ f (uM)
qu

quu,
f (uM)

qu
< u ≤ umax.

Note that these sets depend on Qu. For example, (uf , s) ∈ L2(Qu) means that the feed point lies on the limiting
flux (see Fig. 2, left) and the settler is critically loaded in the corresponding steady state. L1 and L3 are shown in
Fig. 3. In this figure the following sets, which are used in Sect. 3, are also shown:

S = {
(u, y) : quu < y ≤ f3(u)

}
, D = {

(u, y) : 0 ≤ u ≤ umax, y > f3(u)
}
.

By the control strategy DCL1 (direct control with respect to L1) we mean that Qu(t) is defined such that
(uf(t), s(t)) ∈ L1 (Qu(t)). DCL2 and DCL3 are defined analogously. In all three strategies the value of Qu is
uniquely determined by the feed point (uf , s). It is therefore convenient to use the notation Qu = L−1

1 (uf , s) ⇔
(uf , s) ∈ L1(Qu) etc. Strategy DCL2 is motivated by the results on the control of steady states in [1]. Strategies
DCL1 and DCL2 only differ for feed points in (uf , s) ∈ �3 ∪�′, and in [3] we have seen that for step inputs DCL1
is more advantageous than DCL2.

3 Dynamic behaviour

For a settler initially in optimal operation in steady state and with Qu constant, it was in [2] shown that for any step
response, the state of optimal operation is left immediately if and only if (uf , s) ∈ D; see Fig. 3. Consequently, as
(uf , s) ∈ S the settler stays in optimal operation at least for a while. The sets S and D depend on Qu.

The situation during dynamic operation is similar but not identical. As the feed point moves out of S dur-
ing dynamic operation, or Qu(t) varies such that S (Qu(t)) changes and excludes the feed point, the settler will
immediately leave the state of optimal operation as the following theorem states. However, the converse is not true,
as the second following theorem states.

As in the previous papers initial data are denoted with a zero index and refer to t = 0−, e.g. uf0 = uf(0−).
The functions uf(t), Qu(t) and s(t) are assumed to be piecewise monotone, piecewise C1 and continuous from
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Fig. 4 A case when optimal operation is not maintained despite

(uf , s) ∈ S and Qu < ¯̄Qu. The concentration value of the maxi-
mum of the batch settling flux is denoted by uM

b ≡ uM(Qu = 0).
Note that u+ = u+(0) is the boundary value below the feed inlet
at t = 0− and u− = u−(0) the new one above the feed inlet at
t = 0+. Since u− > 0 optimal operation is left
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Fig. 5 Operating chart as Qu = 2488 m3/h showing the re-
gions S = S1 ∪ S2 and D. Located on the dashed feed line
y = (Qf/A)u are the feed points of two examples below; the
crosses correspond to Example 1 (Figs. 6 and 8), and the circles
to Example 2 (Figs. 7 and 9). The filled dot is the initial feed point
(uf0, s0) = (2.5, 7.5) in those examples. The concentration u1
is used in the proof of Theorem 3.2

the right. For example, uM
0 = uM (Qu(0−)) 
= uM (Qu(0)) if Qu makes a step change at t = 0. We introduce the

notation uM
b ≡ uM(Qu = 0) for the concentration value of the maximum of the batch settling flux (see Fig. 4).

Theorem 3.1 Given a settler in optimal operation at t = 0−. If (uf(0), s(0)) ∈ D (Qu(0)), then the settler is not
in optimal operation for small t > 0.

Proof From the definition of optimal operation we have u−(0) = 0 and u+(0) ∈ [0, uinfl]. The statement follows by
applying Condition �. We consider two cases within D (Qu(0)). If (uf(0), s(0)) ∈ �4 (Qu(0)) ∪ U2 (Qu(0)), then
s(0)>f

(
uM (Qu(0))

)
and Condition � yields u+(0) > uM (Qu(0)) > uinfl, which contradicts optimal operation.

If (uf(0), s(0)) /∈ �4 ∪ U2, then—by considering the subcases uf(0) ≶ uM (Qu(0))—one can conclude that the
intersection of ǧ(·; 0)+ s(0) and f̂ (·; u+(0)) occurs, in both subcases, at a flux value γ (0) < s(0) and at a positive
concentration, for which Condition � yields u−(0) > 0. Hence, there is a non-zero concentration in the clarification
zone and the settler is not in optimal operation. �

As examples of the two cases in the proof we refer to the step responses in [2]. For the first case, where
(uf , s) ∈ D ∩ (�4 ∪ U2) (a small set in the right of the operating chart) and u+(0) > uinfl, compare with Fig. 23 in
[2], and for the second case, where u−(0) > 0, Figs. 6, 13 (left), 17 (left), 29, 32 (left), 35 (left) in [2].

To maintain optimal operation it is thus necessary to have the feed point in S (Qu(t)) (and Qu(t) < ¯̄Qu).
However, this is not sufficient. There is the following exceptional case. Suppose Qu(t) is continuous at t = 0 and
u+(0) ∈ (uM, uinfl); see Fig. 4. Then there is a plateau of f̂ (·; u+(0)) that lies below the local maximum point at
uM; f̂

(
uM; u+(0)

)
< f (uM). Suppose also that the feed point lies above this plateau and in S; f̂

(
uM; u+(0)

)
<

s(0) ≤ f (uM). Then Condition � yields u−(0) > 0 (cf. the second case in the proof of Theorem 3.1). There will
be a transport of particles upwards in the clarification zone and optimal operation is left. Note that f ′ (u+(0)) < 0.

Sufficient conditions for keeping optimal operation (at least for a while) are given in the following theorem, in
which the four alternative prerequisites are introduced only to assure that the problem addressed in the previous
paragraph does not occur. We define the following two disjoint subregions of S; see Fig. 5:

S1 (Qu(t)) = S (Qu(t)) ∩
{
(u, y) : y ≤ f (uinfl;Qu(t))

}
,

S2 = S \ S1.
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Theorem 3.2 Given a settler in optimal operation at t = 0−. Assume that Qu(t)<
¯̄Qu and (uf(t), s(t)) ∈ S (Qu(t))

holds for t > 0. Assume also that one of the following holds:

(a) u(x, 0) ∈ [0, uM
min] for 0 < x < xsb(0) and s(t) ≤ f (uM

min) for t > 0, where uM
min ≡ inf

τ>0
uM (Qu(τ ));

(b) u(x, 0) ∈
[
0, uM (Qu(0))

]
for 0 < x < xsb(0) and Qu(t) is non-decreasing for t > 0;

(c) u(x, 0) ∈ [0, uM
b ] for 0 < x < xsb(0) and s(t) ≤ f (uM

b ) for t > 0;
(d) (uf(t), s(t)) ∈ S1 (Qu(t)) for t > 0.

Then the settler stays in optimal operation until the sludge blanket reaches the feed level or the bottom.

Remark Each of the prerequisites (a)–(c) guarantees that all waves (characteristics and discontinuities) above the
sludge blanket have positive speeds. In (d) there may be waves with negative speeds, however, they will disappear.

Proof Consider assumption (a). Since the concentrations above the SBL lie in [0, uM
min] the corresponding character-

istics all have non-negative slope. Optimal operation implies that the boundary concentrations at the feed level satisfy
u−(t) = 0 and u+(t) ∈ [0, uM

min] at t = 0. Given such values at any time point t ≥ 0, the intersection of f̂ (·; u+(t))

and ǧ(·; 0) + s(t) occurs in [0, uM
min] by the assumption s(t) ≤ f (uM

min). By Condition � this yields the boundary
concentrations u−(t) = 0 and u+(t) ∈ [0, uM

min], which by the regularity assumptions hold for at least a small time
interval. Hence, only waves with positive speeds are produced just below the feed level. They move down to the
SBL where they define the boundary concentration above this discontinuity. By the well-known ordering principle
for solutions of this type of equation, concentrations outside the interval [0, uM

min] cannot be created above the SBL.
A similar situation holds below the SBL. At t = 0 the concentration lies in (uinfl, umax]. For all such values of the
boundary concentrations at the bottom, uD(t), formula (6) in [2] implies that uD(t) ∈ [uM, umax] ⊂ (uinfl, umax].
Then the jump and entropy conditions, together with the fact that the boundary concentrations above the SBL lie
in [0, uM

min], imply that the concentrations just below the SBL lie in [uM∗
min, umax] ⊂ (uinfl, umax]. Consequently,

the settler stays in optimal operation until the sludge blanket reaches either the feed level or the bottom. Consider
assumption (b). This case can be treated similarly as in (a) with the following observations. Firstly, since Qu(t) is
non-decreasing and uM(·) is an increasing function, uM (Qu(0)) = uM

min holds. Hence the initial data satisfy the
same condition as in (a). Secondly, the interval [0, uM

min] in the proof of (a) can be replaced by the
[
0, uM (Qu(t))

]

for the following reasons. The length of this interval is non-decreasing and is an increasing part of f (·,Qu(t)). The
assumption (uf(t), s(t)) ∈ S (Qu(t)) always implies that s(t) ≤ f

(
uM (Qu(t)) ,Qu(t)

)
, As in (a) Condition �

implies that only waves with positive speed are created just below the feed level. The monotonicity of Qu(t) implies
that these waves always have positive speed and the proof can be continued as in (a). (c) follows directly from
(a) since uM

b = uM(0) ≤ uM
min and s(t) ≤ f (uM

b ) = f
(
uM(0)

) ≤ f
(
uM (Qu(t))

)
, ∀t . Consider assumption (d).

Optimal operation implies that u+(t) ∈ [0, uinfl) for small t > 0. This implies that the plateau of f̂ (·; u+(t)) lies
in the flux interval

(
f (uinfl), f (uM)

]
, which is above S1. Since s ≤ f (uinfl), the plateau of ǧ(·; 0) + s(t) lies on

or below the level s ≤ f (uinfl). Hence the intersection of ǧ(·; 0) + s(t) and f̂ (·; u+(t)) occurs on the graph of f

at a concentration in [0, u1], where f (u1) = f (uinfl) and u1 < uinfl, see Fig. 5, (u1 is constant if Qu is constant,
otherwise it depends continuously on t at least for a small time interval). Condition � implies that u−(t) = 0 and
u+(t) ≤ u1(t) for small t > 0, and only new waves with positive speeds are created just below the feed level and
with concentrations satisfying optimal operation. In particular, if there were ‘problem’ concentrations in (uM, uinfl)

below the feed level and above the SBL initially, a discontinuity would be created at the feed level having concen-
trations ≤ u1 above it and concentrations in (uM, uinfl) below it. By the jump condition such a discontinuity has a
positive speed. As this reaches the SBL these initial ‘problem’ concentrations disappear. The situation is then as in
case (a). �

As the feed point varies moderately and Qu is held constant, the following result is interesting, referring to one
of the purposes of the settler; see Sect. 2.1.

Corollary 3.1 Given the assumptions in Theorem 3.2 with the following restrictions: u(x, 0) = uM for xsb(0) <

x < D and Qu is constant; then uu is constant until the SBL reaches the bottom.
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Proof The proof of the theorem gives that the possible concentrations above the sludge blanket are [0, uM
min] =

[0, uM]. The jump and entropy conditions imply that the only possible new concentrations that may be created
just below the sludge blanket are [uM∗

, uM]. The characteristics corresponding to these concentrations have non-
positive speed. Consequently, as long as the sludge blanket does not meet the bottom, there is an interval above
the bottom,

(
supτ∈[0,t] xsb(τ ),D

)
, in which the concentration is constant uM. Formula (6) in [2] implies that the

boundary concentration at the bottom is uD(t) = uM and the underflow concentration is constant uu = f (uM)/qu

(mass conservation, cf. formula (8) in [2]). �
From [3, Table 2] we can conclude that a necessary condition for keeping optimal operation after a step input

is that (uf , s) ∈ P1 ∪ �2 ∪ �3a; see Fig. 2. If, in addition, the SBL is not too close to the bottom (inequality (9)
in [3] holds), optimal operation can be maintained. Furthermore, if the SBL meets the bottom, it was shown that
the SBL can be restored within the thickening zone again after a finite time. Accordingly, a necessary condition for
maintaining optimal operation during long time of dynamic operation is that

(uf(t), s(t)) ∈ P1 ∪ �2 ∪ �3a. (2)

Hence, we only consider such cases in the numerical examples.
For the numerical simulations we use the data and batch-settling flux function shown in the caption of Fig. 1,

and the numerical method in [54].

Example 1 To demonstrate the dynamic behaviour we assume that the settler is in optimal operation initially with
(uf0, s0) = (2.5 kg/m3, 7.5 kg/(m2h)), see the filled dot in Fig. 5, and the corresponding Qu0 = L−1

1 (2.5, 7.5) =
2488 m3/h. The feed concentration is a periodic, piecewise constant function, with a period of 4 h, taking the
alternating values 1.8 and 3.2 kg/m3. Assume that Qf/A = 3 m/h is constant. Hence, s(t) is piecewise con-
stant taking the alternating values 3.1.8 = 5.4 and 3.3.2 = 9.6 kg/(m2h), see the crosses in Fig. 5. A simu-
lation where Qu(t) = Qu0 is held constant is shown in Fig. 6. The underflow concentration is unchanged, cf.
Corollary 3.1, and the SBL and mass vary periodically with constant mean values. Hence optimal operation is valid
despite (uf , s) ∈ S2 half the time.

Example 2 Let the initial data be the same as in Example 1 but let the amplitude of the periodic feed concentration
alternate between 1 and 4 kg/m3 instead; see the circles in Fig. 5. The high load yields (uf , s) = (4, 12) ∈ D.
In accordance with Theorem 3.1, the simulation in Fig. 7 shows how optimal operation is left. At the end of the
high-load intervals overflow occurs.

4 Manual control

Strategies for optimal control of step inputs are presented in [3]. We shall here generalize the situation and discuss
and illustrate how such optimal control actions influence the dynamic behaviour when there is a series of step inputs
as in Examples 1 and 2 above.

Initially, the settler is in optimal operation in steady state with (uf0, s0) ∈ �2 ∪ �3. At t = 0 there is a step change
in the feed variables. A necessary condition for obtaining optimal operation in the corresponding new steady state
is that (uf , s) ∈ P1 ∪ �2 ∪ �3a. For step changes in this region strategy DCL1 will in most cases imply that the
settler stays in optimal operation. The only exception is when (uf , s) ∈ D ∩ (P1 ∪ �2 ∪ �3a) and the initial SBL
lies close to the bottom, see [3, Sect. 7.5 and Fig. 31]. In any case, the location of the SBL in the new steady state
is generally not the same as the initial one.

Consider a step input such that s is decreased. Preventing an underloaded settler by lowering Qu directly accord-
ing to DCL1, implies that the mass leaving the settler per time unit through the underflow, uu(t)Qu(t), jumps
directly down to the same value as the fed mass, uf(t)Qf(t) = As(t). The consequences are that the underflow
concentration makes a step increase directly and then stays constant, the mass in the settler is unchanged and the
SBL is stabilized, see [3, Sects. 6.2–6.3].
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Fig. 6 Example 1. A numerical simulation as the feed concentration is piecewise constant and periodic with the alternating values 1.8
and 3.2 kg/m3. Qf (t) = 8482 m3/h, (uf0, s0) = (2.5, 7.5), uu(t) = uu0 = 8.52 kg/m3 and Qu(t) = Qu0 = L−1

1 (uf0, s0) = 2488 m3/h

If the feed flux s is increased in a step input, then DCL1 (Qu is increased) prevents an overloaded settler (see for
example Fig. 16 in [3]). Below the SBL the concentration is constant uM0 and the flux of these particles is (after the
step change) greater than the incoming flux; f (uM0) > s. This implies uu(t)Qu = Af (uM) > As = uf(t)Qf(t),
that is, the mass leaving the settler is greater than the mass fed per unit time. Hence, the mass decreases and the
new stationary SBL is either lower than the initial one, or it reaches the bottom during the transient.

These properties indicate that a direct-control strategy (DCL1) will imply that the SBL decreases, although
optimal operation is maintained. We illustrate this with two examples.

Example 1 (continued) Applying DCL1 yields the simulation shown in Fig. 8. Let Qlow
u and Q

high
u denote the low

and high values of Qu(t) corresponding to the low and high values of uf(t), respectively. Note that the upper limit for
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Fig. 7 Example 2. A simulation where the alternating values of the periodic feed concentration are 1 and 4 kg/m3. This larger ampli-
tude than in Example 1 implies overflow and a slightly declining SBL and mass, on an average. Qf (t) = 8482, (uf0, s0) = (2.5, 7.5),
uu(t) = uu0 = 8.52 and Qu(t) = Qu0 = L−1

1 (uf0, s0) = 2488

optimal operation is ¯̄Qu = 5159 m3/h. Figure 8 shows clearly that the SBL is declining and will eventually reach the
bottom (after 100 h). Furthermore, the underflow concentration fluctuates. In this example no control at all (Fig. 6) is
better than direct control (Fig. 8). The reason for the decreasing mass is that the mass leaving the settler on a four-hour
time average, mean (Qf(t)uf(t)) = 1

4

∫ 4
0 Qu(t)uu(t) dt , is larger than the mass fed to the settler, mean (Qf(t)uf(t)).

We also note that the average value of the control parameter, (Qlow
u + Q

high
u )/2 = 2535, is larger than the value

Qu0 = L−1
1 (2.5, 7.5) = 2488, which corresponds to the initial stationary optimal-operation state.

Example 2 (continued) As the feed point jumps upwards in the operating chart to (uf , s) = (4, 12) ∈ D, there
will be a rising discontinuity in the clarification zone (cf. Theorem 3.1) unless the control parameter is increased.
Strategy DCL1 implies that Qlow

u = L−1
1 (1, 3) = 875 and Q

high
u = L−1

1 (4, 12) = 4563, of which the average,
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Fig. 8 Example 1 (continued). A simulation using the same initial data and the same feed concentration as in Fig. 6. DCL1 is applied.
The two values of Qu(t) are Qlow

u = L−1
1 (1.8, 5.4) = 1688 and Q

high
u = L−1

1 (3.2, 9.6) = 3382. Note that the average value of Qu is
higher than the initial one, which corresponds to a stationary optimal-operation state. Continued simulation shows that the SBL reaches
the bottom after 100 h

2719, is substantially greater than Qu0 = L−1
1 (2.5, 7.5) = 2488. The simulation, shown in Fig. 9, reveal a similar

behaviour as in Fig. 8 with a declining SBL and mass.

Therefore, we demonstrate a modified strategy with the time average of Qu(t) equal to Qu0. During the intervals
when (uf , s) = (4, 12), we choose Q

high
u = L−1

3 (4, 12) = 4335, which is the lowest possible value of Qu satisfy-

ing (uf , s) ∈ S(Q
high
u ). With the lower value set to Qlow

u = 2Qu0 − Q
high
u = 2 · 2488 − 4335 = 640 we get the

simulation in Fig. 10. The mass is now slightly increasing on a four-hour average. In fact, the mass increases with
the rate mean (Qf(t)uf(t) − Qu(t)uu(t)) = 155 kg/h. The reason is of course the nonlinear dependence of uu(t) on
Qu(t). Thus, to maintain optimal operation during long times for a periodically varying feed point with mean value
corresponding to a stationary optimal-operation solution, it is not sufficient to choose the control variable with mean
value according to a stationary solution. However, with a small manual adjustment of the latter strategy—decrease
Qmin

u slightly—the process can be controlled satisfactorily.

5 Conclusions

In this series of papers, the nonlinear behaviour has been classified by means of operating charts, which are concen-
tration-flux diagrams in which the location of the feed point yields qualitative and quantitative information of the
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Fig. 9 Example 2 (continued). A simulation using the same initial data and the same feed concentration as in Fig. 6. DCL1 is applied.
The two values of Qu(t) are Qlow

u = L−1
1 (1, 3) = 875 and Q

high
u = L−1

1 (4, 12) = 4563. The SBL and mass are declining and optimal
operation is left after 15 h
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Fig. 10 Example 2 (continued). A control strategy where Q
high
u is chosen such that (uf , s) ∈ S(Q

high
u ) during the intervals of high feed

concentration, and Qlow
u such that 1

2 (Qlow
u + Q

high
u ) = Qu0. Note that the mass is slightly increasing on a four-hour average
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process. As the feed point varies with time it may move from one region to another, which results in a qualitative
change in the behaviour of the process.

One division of the concentration-flux diagram depends only on the batch settling flux function; see the operat-
ing chart in Fig. 2 (right). A necessary condition for maintaining optimal operation during long time of dynamic
operation is (2). This condition is not satisfied if the feed concentration or the ratio Qf/A is too large. Normally, the
feed concentration is low since the purpose of the device is to thicken the suspension. With the given batch settling
flux function, feed concentrations above the inflection point, uinfl = 4.1 kg/m3, implies that the thickening factor,
the ratio uu/uf for a critically loaded settler, is less than 2, see [1, Fig. 12]. Hence, it is reasonable that uf < uinfl

holds normally. If uf is low and still (uf , s) /∈ P1 ∪ �2 ∪ �3a, then Qf/A is large. Then the cross-sectional area
is too small—the plant is underdimensioned. However, if (uf , s) /∈ P1 ∪ �2 ∪ �3a occurs, Qu has to be increased

sufficiently (even above ¯̄Qu) so that overflow does not occur. Then the SBL will disappear from the thickening
zone; cf. [3], where the control of step responses cover all cases.

Other divisions of the operating chart depend on the flux function in the thickening zone, which depends on the
control variable; see Figs. 2 (left), 3, and 5. Accordingly, even for a constant feed point, the behaviour of the process
may change substantially as the control variable changes.

The limitations of the control variable to maintain optimal operation have been established in Sect. 3. Consider
the operating chart in Fig. 3. The feed point may be located in the region above the line y = quu. This region can be
divided into two disjoint regions, the safe, S, and the dangerous, D, which both depend on Qu. For step responses
from optimal operation in steady state, the following nice equivalence holds: the state of optimal operation is left
immediately if and only if (uf , s) ∈ D. Consequently, as (uf , s) ∈ S the settler stays in optimal operation at least
for a while.

For a general dynamic solution the situation is similar but not identical. Theorem 3.1 states that optimal operation
is left immediately if (uf , s) ∈ D. From the proof we can infer two different situations. One occurs only for high
values of the feed concentration and is therefore probably not of interest for the applications. The other situation is
the interesting one in practice, when the feed concentration is not too high. Then optimal operation is left because
of an upflow of particles in the clarification zone.

During dynamic operation, optimal operation can be left even if (uf , s) ∈ S. A sufficient condition for main-
taining optimal operation, (at least for a while) which does not depend on the concentration distribution, is that
(uf , s) ∈ S1, see Theorem 3.2 and Fig. 5. Thus, a theoretically safe lower bound Qmin

u (t) of the control variable is
the minimal value that satisfies

(uf(t), s(t)) ∈ S1

(
Qmin

u (t)
)

.

In many cases this means that (uf , s) lies on the horizontal boundary between S1 and S2, which means that
s(t) = f

(
uinfl,Qmin

u (t)
)
. A high value of s implies a high value of Qmin

u , which may imply a fast declining SBL
and a low underflow concentration. Furthermore, in a wastewater treatment plant, most of the underflow is returned
to a biological reactor before the settler, and high flow values may be disadvantageous.

For (uf , s) ∈ S2 (see Fig. 5) it is only exceptionally that optimal operation is left. Thus, a less restrictive condition,
which we recommend, is to define Qmin

u (t) such that

(uf(t), s(t)) ∈ S
(
Qmin

u (t)
)

(3)

holds. This implies a lower value of Qmin
u (t). If the location of the feed point is such that (uf(t), s(t)) ∈ S(0),

then Qmin
u (t) can be set to a small positive value. (We have assumed that Qu(t) > 0, otherwise uu(t) is undefined.)

Otherwise, we define Qmin
u (t) = L−1

3 (uf(t), s(t)), which means that the feed point lies on the upper boundary of S;
see Fig. 5. The exceptional problematic case that may occur when (uf , s) ∈ S2 is when the concentration happens
to be rather high (in the interval (uM, uinfl)) just below the feed level. This is believed to occur only rarely, and if
it occurs, we may allow some particles in the lower part of the clarification zone during a limited time period. The
advantage of a lower value of Qmin

u , which is to reduce the risk for the SBL to reach the bottom, is thus probably
more important in the application.
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An upper bound on the control variable is ¯̄Qu by the definition of optimal operation. If a constraint of a control
objective is that the underflow concentration should lie above a given lower bound, then this can be guaranteed by
an upper bound on the control variable, see [3, Theorem 4.1]. Together with the lower bound defined above, we
have thus defined a time-dependent interval in which the control variable must stay to maintain optimal operation.

The theoretical results and discussions have been exemplified by numerical simulations. We have used the control
strategy DCL1 (direct control with respect to stationary optimal operation), which is the main part of the optimal
control strategies for step inputs in [3], and the above-mentioned bounds of the control variable. Although the
process can be controlled, the following nonlinear behaviour makes it difficult to define the exact appropriate val-
ues of the control variable: To maintain optimal operation during long times for a periodically varying feed point
with mean value corresponding to a stationary optimal-operation solution, it is not sufficient to choose the control
variable with mean value according to a stationary solution.

In Example 1, with a moderate amplitude of the oscillating feed point, we have seen that no control at all (Fig. 6)
is in the long run better than DCL1 (Fig. 8). It is true that the oscillation of the SBL has a smaller amplitude with
DCL1, but it declines slowly and will reach the bottom.

In Example 2 the amplitude of the oscillating feed point is so high that overflow occurs without any control.
Strategy DCL1 prevents overflow, but results in a rather fast declining SBL. A modified strategy with the lowest
possible control variable satisfying (3), during the intervals of high load, yields a much better control; see Fig. 9.
The slowly, on an average, declining SBL can be adjusted by decreasing the control variable further during the
intervals of low load. In this way the process can be controlled satisfying control objectives that requires that optimal
operation is maintained and that the average SBL is kept in the middle of the thickening zone.

Acknowledgement I am grateful to Dr Ulf Jeppsson, Lund University, for his comments on the manuscript. This work has been
supported by the Swedish Research Council (Vetenskapsrådet), project 621-2005-3873.
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